Test 2 / Numerical Mathematics 1 / May 30th 2023, University of Groningen

## Instructions

- Write the answers to Exercises 1 and 2 on separate sheets.
- Use a ball-point pen (blue or black ink) to write your answers.
- You have 2 hours to complete the test. When applicable, people with special facilities have 2 h 20 minutes in total.
- The exam is "closed book", meaning that you can only make use of the material given to you.
- A simple calculator is allowed.
- The grade will be computed as the number of obtained points, plus 1 .
- Not complying with the aforementioned rules will lead to zero points.


## Exercise 1 (6 points)

Consider the problem: Find $x^{*}$ such that $g\left(x^{*}\right)=0$ solved via the iterations

$$
\begin{equation*}
x^{(n+1)}=p\left(x^{(n)}\right):=x^{(n)}-g\left(x^{(n)}\right) / g^{\prime}\left(x^{(n)}\right) \tag{1}
\end{equation*}
$$

(a) 2 Show that if $g(x)=\left(x-x^{*}\right)^{q} h(x), q>0, h\left(x^{*}\right) \neq 0$, then $p^{\prime}\left(x^{*}\right)=1-1 / q$.
(b) 1.5 Using iterations (1) for finding the root of $g(x)=x^{2.5}$ leads to the following iterands

$$
\begin{array}{c|cccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline x^{(n)} & 20 & 12 & 7.2 & 4.32 & 2.592 & 1.5552
\end{array}
$$

Compute the convergence order of these iterations and explain the obtained value using the theory studied in the course.
(c) 1 Propose a new itcration function $w(x)$ (depending on the specific $g(x)$ given in the first question), by modifying $p(x)$ in order to obtain a higher order of convergence. Justify according to the theory seen in class and tutorials.
(d) 1.5 Using the modified iteration function $w(x)$, perform a few iterations to approximate the root of $x^{2.5}$, with $x^{(0)}=20$. Explain the difference in the convergence order with respect to the iterations (1).

## Exercise 2 ( 3 points)

Consider solving the linear system of equations $B y=a$, with $B \in \mathbb{R}^{n \times n}$, using the following iterative procedure

$$
\begin{equation*}
y_{k}=y_{k-1}+\gamma\left(B y_{k-1}-a\right), \quad k \geq 1 \tag{2}
\end{equation*}
$$

with

$$
B=\left[\begin{array}{ll}
2 & -1 \\
1 & -3
\end{array}\right], a=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(e) 2 Is it possible to choose a constant value of $\gamma$ such that the iterations (2) converge? Justify your answer just by recalling the proofs studied in the course.
(f) 1 In case you answered "yes" in the previous question, give a value of $\gamma$ that makes the iterations converge. If you answered "no", re-write the linear system (such that the solution is the same) so you can pick a value of $\gamma$ for making the solutions converge.

